129 research outputs found

    Stem cell mechanical behaviour modelling: substrate’s curvature influence during adhesion

    Get PDF
    Recent experiments hint that adherent cells are sensitive to their substrate curvature. It is already well known that cells behaviour can be regulated by the mechanical properties of their environment. However, no mechanisms have been established regarding the influence of cell-scale curvature of the substrate. Using a numerical cell model, based on tensegrity structures theory and the non-smooth contact dynamics method, we propose to investigate the mechanical state of adherent cells on concave and convex hemispheres. Our mechanical cell model features a geometrical description of intracellular components, including the cell membrane, the focal adhesions, the cytoskeleton filament networks, the stress fibres, the microtubules, the nucleus membrane and the nucleoskeleton. The cell model has enabled us to analyse the evolution of the mechanical behaviour of intracellular components with varying curvature radii and with the removal of part of these components. We have observed the influence of the convexity of the substrate on the cell shape, the cytoskeletal force networks as well as on the nucleus strains. The more convex the substrate, the more tensed the stress fibres and the cell membrane, the more compressed the cytosol and the microtubules, leading to a stiffer cell. Furthermore, the more concave the substrate, the more stable and rounder the nucleus. These findings achieved using a verified virtual testing methodology, in particular regarding the nucleus stability, might be of significant importance with respect to the division and differentiation of mesenchymal stem cells. These results can also bring some hindsights on cell migration on curved substrates

    Ensembles Are Required to Handle Aleatoric and Parametric Uncertainty in Molecular Dynamics Simulation

    Get PDF
    Classical molecular dynamics is a computer simulation technique that is in widespread use across many areas of science, from physics and chemistry to materials, biology, and medicine. The method continues to attract criticism due its oft-reported lack of reproducibility which is in part due to a failure to submit it to reliable uncertainty quantification (UQ). Here we show that the uncertainty arises from a combination of (i) the input parameters and (ii) the intrinsic stochasticity of the method controlled by the random seeds. To illustrate the situation, we make a systematic UQ analysis of a widely used molecular dynamics code (NAMD), applied to estimate binding free energy of a ligand-bound to a protein. In particular, we replace the usually fixed input parameters with random variables, systematically distributed about their mean values, and study the resulting distribution of the simulation output. We also perform a sensitivity analysis, which reveals that, out of a total of 175 parameters, just six dominate the variance in the code output. Furthermore, we show that binding energy calculations dampen the input uncertainty, in the sense that the variation around the mean output free energy is less than the variation around the mean of the assumed input distributions, if the output is ensemble-averaged over the random seeds. Without such ensemble averaging, the predicted free energy is five times more uncertain. The distribution of the predicted properties is thus strongly dependent upon the random seed. Owing to this substantial uncertainty, robust statistical measures of uncertainty in molecular dynamics simulation require the use of ensembles in all contexts

    Toward High Fidelity Materials Property Prediction from Multiscale Modeling and Simulation

    Get PDF
    The current approach to materials discovery and design remains dominated by experimental testing, frequently based on little more than trial and error. With the advent of ever more powerful computers, rapid, reliable, and reproducible computer simulations are beginning to represent a feasible alternative. As high performance computing reaches the exascale, exploiting the resources efficiently presents interesting challenges and opportunities. Multiscale modeling and simulation of materials are extremely promising candidates for exploiting these resources based on the assumption of a separation of scales in the architectures of nanomaterials. Examples of hierarchical and concurrent multiscale approaches are presented which benefit from the weak scaling of monolithic applications, thereby efficiently exploiting large scale computational resources. Several multiscale techniques, incorporating the electronic to the continuum scale, which can be applied to the efficient design of a range of nanocomposites, are discussed. Then the work on the development of a software toolkit designed to provide verification, validation, and uncertainty quantification to support actionable prediction from such calculations is discussed

    Automated Variance-Based Sensitivity Analysis of a Heterogeneous Atomistic-Continuum System

    Get PDF
    A fully automated computational tool for the study of the uncertainty in a mathematical-computational model of a heterogeneous multi-scale atomistic-continuum coupling system is implemented and tested in this project. This tool can facilitate quantitative assessments of the model’s overall uncertainty for a given specific range of variables. The computational approach here is based on the polynomial chaos expansion using projection variance, a pseudo-spectral method. It also supports regression variance, a point collocation method with nested quadrature point where the random sampling method takes a dictionary of the names of the parameters which are manually defined to vary with corresponding distributions. The tool in conjunction with an existing platform for verification, validation, and uncertainty quantification offers a scientific simulation environment and data processing workflows that enables the execution of simulation and analysis tasks on a cluster or supercomputing platform with remote submission capabilities

    Accelerating Heterogeneous Multiscale Simulations of Advanced Materials Properties with Graph-Based Clustering

    Get PDF
    Heterogeneous multiscale methods (HMM) capable of simulating asynchronously multiple scales concurrently are now tractable with the advent of exascale supercomputers. However, naive implementations display a large number of redundancies and are very costly. The macroscale model typically requires computations of a large number of very similar microscale simulations. In hierarchical methods, this is barely an issue as phenomenological constitutive models are inexpensive. However, when microscale simulations require, for example, high-dimensional molecular dynamics (MD) or finite element (FE) simulations, redundancy must be avoided. A clustering algorithm suited for HMM workflows is proposed that automatically sorts and eliminates redundant microscale simulations. The algorithm features a combination of splines to render a low-dimension representation of the parameter configurations of microscale simulations and a graph network representation based on their similarity. The algorithm enables the clustering of similar parameter configurations into a single one in order to reduce to a minimum the number of microscale simulations required. An implementation of the algorithm in the context of an HMM application coupling FE and MD to predict the chemically specific mechanical behavior of polymer-graphene nanocomposites. The algorithm furnishes a threefold reduction of the computational effort with limited loss of accuracy

    A robust and efficient 3D constitutive law to describe the response of quasi-brittle materials subjected to reverse cyclic loading: formulation, identification and application to a RC shear wall

    Get PDF
    In this paper, a new constitutive law aiming at describing the quasi-brittle behavior when subjected to cyclic loading is presented.The proposed model is formulated with in the frame work of isotròpic contínuum damage mechanics.The cauchy stress tensor is split in to two contributions: one related to the matrix (without cracks) behavior the other related to the crack behavior.This strategy allows accounting for both the crack closure effect and the hysteretic effect in an eficient way making possible large-scale computations.In addition,a specific attention is paid to the way of identifying the material parameters, often requiring complex experimental tests not always easy to carry out. A virtual testing approach based on the use of a discrete element model is used for this purpose

    The heterogeneous multiscale method applied to inelastic polymer mechanics

    Get PDF
    Mechanisms emerging across multiple scales are ubiquitous in physics and methods designed to investigate them are becoming essential. The heterogeneous multiscale method (HMM) is one of these, concurrently simulating the different scales while keeping them separate. Owing to the significant computational expense, developments of HMM remain mostly theoretical and applications to physical problems are scarce. However, HMM is highly scalable and is well suited for high performance computing. With the wide availability of multi-petaflop infrastructures, HMM applications are becoming practical. Rare applications to mechanics of materials at low loading amplitudes exist, but are generally confined to the elastic regime. Beyond that, where history-dependent, irreversible or nonlinear mechanisms occur, not only computational cost but also data management issues arise. The micro-scale description loses generality, developing a specific microstructure based on the deformation history, which implies inter alia that as many microscopic models as discrete locations in the macroscopic description must be simulated and stored. Here, we present a detailed description of the application of HMM to inelastic mechanics of materials, with emphasis on the efficiency and accuracy of the scale-bridging methodology. The method is well suited to the estimation of macroscopic properties of polymers (and derived nanocomposites) starting from knowledge of their atomistic chemical structure. Through application of the resulting workflow to polymer fracture mechanics, we demonstrate deviation in the predicted fracture toughness relative to a single-scale molecular dynamics approach, thus illustrating the need for such concurrent multiscale methods in the predictive estimation of macroscopic properties

    The Role of Graphene in Enhancing the Material Properties of Thermosetting Polymers

    Get PDF
    Graphene continues to attract considerable attention from the materials science community through its potential for improving the mechanical properties of polymer thermosets, yet there remains considerable uncertainty over the underlying mechanisms. The effect of introducing graphene sheets to a typical thermosetting polymer network on mechanical behaviour is explored here through concurrently coupling molecular dynamics with a finite element solver. In this multiscale approach, Graphene is observed to act in two ways: as passive microscopic defects, dispersing crack propagation (high deformation); and as active geometric constraints, impeding polymer conformational changes (low deformation). By contrast, single‐scale atomistic simulations alone predict little measurable difference in the properties of the graphene‐enhanced epoxy resins as compared with the pure polymer case. The multiscale model predicts that epoxy resins reinforced with graphene nanoparticles exhibit enhanced overall elastoplastic properties, reducing strain energy dissipation by up to 70%. Importantly, this is only observed when taking into account the complex boundary conditions, mainly involving shear, arising from coupling physics on length scales separated by five orders of magnitude. The approach herein clearly highlights a novel role of graphene nanoparticles in actively constraining the surrounding polymer matrix, impeding local dissipative mechanisms, and resisting shear deformation

    Ensembles are required to handle aleatoric and parametric uncertainty in molecular dynamics simulation

    Get PDF
    Classical molecular dynamics is a computer simulation technique that is in widespread use across many areas of science, from physics and chemistry to materials, biology, and medicine. The method continues to attract criticism due its oft-reported lac
    corecore